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Three-dimensional elastic constants were calculated for cellulose crystalline forms I and II (native and 
regenerated celluloses, respectively). The calculated Young's modulus E l along the chain axis is 167.5 GPa 
for form I and 162.1 GPa for form II. The El of form II has only a slightly lower value than that for form 
I. This is consistent with the X-ray data (c. 120-140 GPa for form I and c. 110 GPa for form II) although 
the absolute values are large. The E~ was found not to be affected by intermolecular interactions but by 
intramolecular hydrogen bonds along the chain axis, especially the bond between the hydroxyl side group 
and the ether oxygen atom of the glucose ring (type a). A calculation neglecting this hydrogen bond gives 
the largely reduced E l of c. 70 GPa. Anisotropy of the Young's modulus and linear compressibility in the 
planes perpendicular to the molecular chain axis were also calculated. In the form I crystal, where the 
hydrogen-bonded sheet planes are stacked together by non-bonded van der Waals interactions, the modulus 
is large within the sheet plane and small in the direction perpendicular to the sheet: the anisotropy is 
similar to that reported for the nylon 6 c¢ and 7 forms. In form II the modulus is large but the anisotropy 
is not so remarkable, which is similar to atactic poly(vinyl alcohol) and poly(m-phenylene isophthalamide). 
The same tendency is seen also for the linear compressibility. In parallel with the calculation of the elastic 
constants, the lattice vibrational frequencies were calculated for forms I and II and compared with the 
observed infra-red and Raman spectral data so as to confirm whether the force fields used were reasonable. 

(Keywords: native cellulose; regenerated cellulose; three-dimensional elastic constants; vibrational frequencies; lattice 
dynamics; hydrogen bonds) 

I N T R O D U C T I O N  

Cellulose exhibits various types of crystal modifications 
depending on the sample preparat ion conditions l'z. 
Among these crystal modifications, the most  typical and 
basic crystalline phases are forms I and II, i.e. the native 
cellulose and the regenerated cellulose, respectively. One 
of the characteristic properties of cellulose is its significant 
role as the structural supporter for cell walls of plants, 
bacteria, papers, etc. Therefore it is very important  to 
interpret the relationship between structure and mechan- 
ical properties of cellulose crystals from the molecular 
theoretical point of view and to predict their limiting 
mechanical properties. In a long scientific history of 
cellulose however, the measurement has been limited only 
to the Young's modulus along the chain axis using X-ray 
diffraction 3 5. On the theoretical side, the highly compli- 
ca ted  crystal structures of forms I and II have made it 
practically impossible to calculate the three-dimensional 
elastic constants. In a series of papers we developed lattice 
dynamical equations for calculating the three-dimen- 
sional elastic constants of polymer systems with compli- 
cated structures by utilizing the symmetry properties of 
the crystals 6. These equations were applied to the cases 
of or thorhombic polyethylene 7, poly(vinyl alcohol) 7, 
nylon 6 c¢ and 7 forms8, poly(vinylidene fluoride) form 
19 and isotactic polypropylene ~°. In the present paper 
we report the lattice-dynamically calculated three-dimen- 
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sional anisotropy of the elastic constants for native and 
regenerated celluloses. 

In the theoretical evaluation of the elastic constants, 
three-dimensional atomic coordinates data and suitable 
intra- and intermolecular force field parameters must be 
used. Therefore we have monitored the appropriateness 
of the structure and force field used here through 
comparison of the observed and calculated normal-mode 
frequencies for crystal forms I and II  in the frequency 
region covering the internal and external vibrational 
modes. Among the intra- and intermolecular interactions, 
hydrogen bonds of O H  • • • O type are expected to play 
an important  role in determining the anisotropic mechan- 
ical properties and lattice vibrational frequencies of the 
celluloses, on which our discussion will be focused. 

S T R U C T U R E  A N D  F O R C E  F I E L D  
PARAMETERS 

Three-dimensional elastic constants and normal-mode 
frequencies are calculated on the basis of lattice dynam- 
ical equations developed in our previous paper 6. In 
this method parameters concerning only one crystallo- 
graphically asymmetric unit are sufficient to obtain 
information for the overall crystal. 

Crys ta l  s tructure  

Crystal structures of cellulose I and II  have not been 
perfectly determined 11-16. However, X-ray diffraction 
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Figure 1 Crystal structures of cellulose forms I and II (projection 
along the chain axis) a~'~3 

data and energy calculations 17-2° basically support  the 
structural models proposed by Blackwell et al. 1~'~3, 
which are employed in the present calculations. Figure 
1 shows the crystal structures of forms I and II proposed 
by Blackwell et al. The cell constants are as follows: for 
form I, a = 8.17 ,~, b = 7.86 ,~, c(fibre axis) = 10.38 ,&, 
7 = 9 7 ° ;  for form II, a = 8 . 0 1 , ~ ,  b = 9 . 0 4 / ~ ,  c(fibre 
ax is )=  10.36,~, 7 =  117.1 ~. In Figure 1 the hydrogen 
atoms are shown because the intermolecular H . . .  H 
interactions play an important  role in determining the 
anisotropic behaviour of the mechanical constants in the 
direction perpendicular to the chain axis. The hydrogen 
atoms were generated so as to satisfy the following 
geometrical conditions: for the hydrogen atoms in C H  2 
and CH groups, the bond length C - H  = 1.10 ~ and the 
bond angle / _ H O C =  109.5 ° were assumed; for the 
hydrogen atoms in O H  groups, the bond length O - H  = 
0.968A and the bond angle / H O C =  109.5" were 
assumed and the torsional angles around the linkage 
H - O  C - C  were determined in such a way that the 
hydrogen bond distance O • • • H - O  was minimized. This 
method does not necessarily give the energetically most 
favourable hydrogen bonds. 

The two chains are contained in the unit cell of cellulose 
I (strictly speaking, the true unit cell contains eight chains 
and has a cell v.olume four times larger than that of the 
basic unit cell shown in Figure 1). The molecular chains 
take an almost fully extended conformation. They are 
connected with each other by intermolecular hydrogen 
bonds along the a axis to form a sheet-like structure and 
these sheets are stacked together by van der Waals forces 
along the b axis. In form II, the sheets are connected to 
each other by hydrogen bonds. The two forms also differ 
in the packing style of the sheets. In form I all the 
molecular chains are packed in parallel along the chain 
axis (the parallel packing structure), while in form II the 
chains in the adjacent sheets are packed in an anti-parallel 

mode. Another large difference in structural features 
between these two forms exists in the intramolecular 
hydrogen bonds. In form I, as shown in Figure 2, 
intramolecular hydrogen bonds of types a and b are 
constructed for both the sides of the chain. In form II 
the sheets are classified into two types; the sheet at the 
corner of the unit cell is constructed from chains having 
both a and b hydrogen bonds (almost equivalent to the 
intra-sheet structure of form I) and another sheet at the 
centre of the unit cell consists only of chains with 
intramolecular type a hydrogen bonds. 

Intra- and intermolecular interactions 

For  the intramolecular interactions a valence force field 
was employed, and the numerical values of the force 
constants proposed by Cael et al. 21 were used with some 
modifications: these force constants can reproduce fairly 
well the infra-red (i.r.) and Raman data in the frequency 
region 400-3000 cm-1.  The force constants f of the 
O H • • • O hydrogen bonds were introduced. The values 
were determined on the basis of the empirical relationship 
of the f ( O - H )  and f ( O  . - .  H) versus 0 . . .  0 distance 
as proposed by Novak 22, and were modified slightly so 
as to give the calculated O H stretching frequencies as 
close to the observed ones as possible. Appendix I lists 
the force constants used in the calculation. For the 
intermolecular force constants the second derivatives of 
the non-bonded interatomic potentials with respect to 
the interatomic distance r (in /k) were used, where 
potential functions of Buckingham and Lennard-Jones 
type were employed. The f values (in units of mdyn A l) 
were given by the following functions: for the H . . .  H 
pairs within 3.2/k, f = -7 . 972 / r  s + 258.01 e x p ( -  3.74r), 
for the C . . . H  pairs within 3.4A, [ = - 3 6 . 5 / r S +  
820.58 exp( -3 .67r ) ,  and for the O - . .  H pairs within 
3.0 A, f = 2591.41/r 14. For the f values of intermolecular 
hydrogen bonds the above-mentioned Novak ' s  empirical 
relation was used (Appendix 1). 

Elastic constant tensors 

Crystal forms I and II belong to the monoclinic system 
and the elastic constant tensors are as follows: 

C =  

- e l l  (2'12 C13 0 0 C16- 

C21 ( :22  (-!23 O 0 (:26 

C31 C32 C33 0 0 C36 

0 0 0 (2'44 C45 0 

0 0 0 c54 c55 0 

C61 C62 C63 0 0 ('66 

Figure 2 

u Cellulose [][ 
Cellulose I 

Intramolecular hydrogen bonds in cellulose forms 1 and II  
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where the x, y and z axes are defined as shown in Figure 
1 and xx  = 1, y y =  2, z z =  3, yz =4 ,  z x =  5, and x y =  6. 
For computer calculation, numerical data involving only 
one glucose-ring residue were prepared. The data on the 
remaining residues in the unit cell were generated by 
utilizing the symmetry relation of the crystal (the 
two-folded screw symmetry and translational symmetry). 
In the case of form II the chains belonging to the 
neighbouring sheets are different in the up and down 
directions along the chain axis and they are symmetrically 
independent of each other. Therefore the total number 
of internal coordinates necessary for the calculation of 
the elastic constants (the bond lengths, bond angles, and 
internal rotations)reaches c. 160 x 2 = 320! A calculation 
based on such a large dimension for the matrices 
(320 x 320) is impractical. Two local structures are 
extracted: (A) the structure surrounding the corner chain 
of the cells; (B) the structure surrounding the centre chain 
of the cells. The elastic compliance constants are averaged 
between models A and B and the constants obtained are 
used for the real cellulose II crystal. 

RESULTS AND DISCUSSION 

Appropr&teness o f  the force fields 
The calculation for normal modes for cellulose single 

chains has been reported previously by Cael et al. 2~ with 
reasonable results except for the modes associated with 
hydrogen bonds. In the present calculation the external 
lattice-mode frequencies were obtained in addition to the 
intramolecular mode frequencies. The vibrational fre- 
quencies calculated for cellulose form I are listed in 
Appendix 2. In Figures 3, 4 and 5 a comparison is made 
between the calculated frequencies and those actually 
observed in Raman (4000-300cm -1) and far-i.r. 
(400-30 cm-  1) spectra of crystal forms I and II, indicat- 
ing that the calculated results are not so unreasonable 
when compared with the observed spectra. The degree 
of vibrational freedom is very large and many bands 

Cellulose 

3500 3 I00 2700 
Wavenumber/cm -I 

Figure 3 Raman spectra of cellulose forms ! (cotton) and [[ 
(cellophane) in the region of 2500-3700 cm -1. The vertical bars 
represent the calculated frequency positions 
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Figure 4 Raman spectra of cellulose forms I (cotton) and II 
(cellophane) in the region of 200-1600 cm- 1. The vertical bars represent 
the calculated frequency positions 
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Figure 5 Far-i.r. spectra of cellulose forms [ (cotton) and [I 
(cellophane) in the region 30-400 cm-l. The vertical bars represent 
the calculated frequency positions 
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overlap to result in broad spectra (Figures 3-5) .  Con- 
sequently, a detailed comparison of the frequency 
position of the observed and calculated modes cannot be 
made directly except for some intense bands. There are 
several bands which closely relate to the intra- and 
intermolecular hydrogen bonds 23-25. We will focus our 
attention on the vibrational modes of the A symmetry 
species of cellulose form I. The band at 3412cm -1 
(calculated value) is the O - H  stretching mode contri- 
buted preferentially by the intramolecular hydrogen bond 
of type b, while the 3372 cm-  1 band is for the hydrogen 
bond of type a. The bands of the O - H  stretching modes 
associated with the intermolecular hydrogen bonds 
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appear at lower frequencies around 3300cm -1. The 
bond-angle deformation and internal rotation modes 
related to the hydrogen bonds are calculated to appear 
in the frequency region below 400 cm -1. For example, 
in the modes at 430 and 413cm -~ the vibrational 
potential energy distributes to the bending and torsional 
coordinates of the intra-chain hydrogen bonds. The 
bands at 276 and 176 cm-~ correspond to the internal 
rotation modes of the hydrogen-bonded - C H 2 - O - H  
group. The bands at 306, 141 and 117 cm-1 are related 
closely to the O . . . H ( O )  stretching modes of the 
intramolecular hydrogen bonds of types a (306 and 
l l 7 c m  ~) and b (141cm-1) .  As discussed later, these 
O • • - H(O)internal  displacement coordinates, especially 
of type a, contribute significantly to the determination 
of the magnitude of the Young's modulus along the chain 
axis. The vibrational modes associated with the hydrogen 
bonds are in different frequency positions for forms ! and 
II. For example, the O - H  stretching modes of the 
intramolecular hydrogen bonds appear at higher fre- 
quency in form II, while those of the intermolecular 
hydrogen bonds are at almost the same frequency as 
those for form I. For the O • • - H stretching mode at low 
frequency the frequencies are higher in form I (see 
Table 1 ). 

This indicates that the intramolecular hydrogen bonds 
in form II are relatively weaker than those in form I, 

Table 1 Vibrational modes associated with hydrogen bonds 

O H stretching modes 
intramolecular H bonds 

intermolecular H bonds 
O . . .  H stretching 

of type a 

F o r m I ( c m  ~) F o r m l I  (cm 1) 

3412, 3372 3486, 3315 (model A) 
3435, 3374 (model B) 

3309 3309, 3308 
306, 117 295.88 

while their intermolecular hydrogen bond strength is 
similar. These differences in hydrogen bond strength 
reflect a slight difference in the Young's modulus between 
the two crystal forms, as described below. Figure 6 shows 
the lattice vibrational modes of cellulose I. The vibra- 
tional frequency of the translational mode along the b 
axis L(Tb) is much higher than those of L(T,,) and L(T,.), 
suggesting that the shearing modes along the sheet planes 
occur more easily than the compression mode in the 
direction perpendicular to the sheet plane. The vibra- 
tional modes around the chain axis are predicted to 
appear at 80 and 54cm-1 ,  but have not yet been 
definitely observed in the far-i.r, spectra (Figure 5). 

Three-dimensional elastic' constant matrices 
The calculated elastic constant matrices c and com- 

pliance matrices s are" 

For form I 

For  form II 

S ~  

S ~  

54.55 

1.58 

- 2 . 5 2  
C =  

0 

0 

- 3.23 

1.99 - 0 . 8 4  

- 0 . 8 4  9.400 

0.03 - 0 . 0 5  

0 0 

0 0 

2.21 - 9 . 5 3  

1.58 --2.52 0 0 

15.16 1.26 0 0 

1.26 167.79 0 0 

0 0 3.53 1.43 

0 0 1.43 8.08 

4.31 0.51 0 0 

0.03 0 0 

- 0 . 0 5  0 0 

0.60 0 0 

0 30.53 - 5 . 4 2  

0 - 5 . 4 2  13.35 

0.01 0 0 

18.07 

3.84 

0.60 

0 

0 

- 0 . 0 5  

5.84 - 1.43 

- 1 . 4 3  6.68 

--0.02 --0.01 

0 0 

0 0 

1.04 - - 4 . 6 3  

3.84 0.60 0 0 

18.38 0.35 0 0 

0.35 162.07 0 0 

0 0 6.08 - 5.03 

0 0 - 5.03 6.29 

3.72 - 0 . 0 2  0 0 

- 0 . 0 2  0 0 

-0 .01  0 0 

0.62 0 0 

0 48.62 38.86 

0 38.86 46.95 

-0 .01  0 0 

- 3 . 2 3 -  

4.31 

0.51 

0 

0 

4.51 

2.21- 

-9 .53  

0.01 

0 

0 

32.70 

G P a  

× 10 2 G P a - 1  

1.04-  

- 4 . 6 3  

-0 .01  

0 

0 

21.77 

- 0 .05 .  

3 .72 

- 0 . 0 2  
G P a  

0 

0 

5.39 

X 10 - 2  G P a  
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L(R) + 8 0 c m - '  ,L (T b) .81cm -I 

L(R)- 54cm -I T b 0 cm-; 

L(T c) 4 Icm-i L ( T  o) 3 4 c m  -I 

T c O c m  -I Ta  O c m  -I 

Figure 6 A schematic illustration of the external lattice modes 
calculated for cellulose form I 

Based on these tensors, the Young's modulus along 
the chain axis El and the anisotropy of the Young's 
modulus and linear compressibility in the planes perpen- 
dicular to the chain axis are calculated as follows. 

The Young's modulus E t along the chain axis. The El 
is calculated as  1/$33. For crystal form I, E t = 167.5 GPa  
and for form II, E~ = 162.1 GPa.  The crystallite modulus 
observed by the X-ray diffraction method under homo- 
geneous tensile stress distribution has been reported as 
below. 

Sakurada et al. 3'4 Matsuo and Sawatari 5 
Form I 130-138 GPa  120-140 GP a  
Form II 90 GPa  106-112 GPa  

The observed values are dispersive to some extent, but 
the difference in E t between forms I and II is not very 
large. This corresponds well to the calculated tendency, 
although the absolute values are much higher in the 
calculation. A difference in E~ between the theoretical and 
X-ray observed values is frequently reported. Some of 
the reasons are as follows. 

1. The difference in temperature. The X-ray measure- 
ment was carried out at room temperature and the 
calculation corresponds to the modulus at low 
temperature where the thermal motion of the chain is 
frozen. Examples are seen for the cases of ortho- 

rhombic polyethylene (PE) z6-28 and trigonal poly- 
oxymethylene (POM) 29-31. In the case of POM 31, 
the (true) crystallite modulus at room temperature 
was estimated as c. 75 GPa  and that at liquid nitrogen 
temperature as c. 100 GPa.  The latter is close to the 
calculated modulus of 109 GPa,  which did not include 
the effect of thermal motion of the chain. 

2. The effect of sample morphology on the observed 
modulus. The crystallite modulus is usually measured 
under the assumption that the stress distribution 
within the sample is homogeneous. Such an assump- 
tion is not always suitable and heterogeneous stress 
distribution must be taken into account in some 
cases  26'29'31'32. For POM, for example, the modulus 
obtained using the homogeneous stress distribution 
model is 47-73 GPa  and is different among the 
samples employed in the measurements 29-31. These 
experimental data were interpreted on the basis of the 
suitable mechanical model and the true modulus was 
estimated as c. 75 GPa  at room temperature after 
correction for the stress distribution 31. 

Figure 7 shows the effects of the various kinds of 
interactions on Et, where the moduli are reduced by 
using the E~ value calculated for cellulose I with all 
the interactions being taken into account (case A). In 
the case of form I, E~ is not influenced by inter- 
molecular hydrogen bonds (case B) and intermolec- 
ular non-bonded interatomic interactions (case C). In 
other words, E t is hardly influenced by intermolecular 
interactions, as generally reported for other polymer 
crystals 7-t°. Neglecting the intramolecular hydrogen 
bond of type b also does not affect Et (case D). However, 
the modulus is reduced to about 40% of its original value 
when the type a intramolecular hydrogen bond is 
neglected (case E). Figure 8 shows the atomic displace- 
ments and the strain energy distribution calculated for 
the cellulose chain subjected to the hypothetically large 
tensile strain of 10°,/o 33. The strain energy distributes 
mainly to the deformation of the glucose rings (c. 30%) 
and the bending of the ether linkages connecting the 

I 0 0  

8 0  

,.-,_ 6o 

4 0  

o ] 
• ]] 

2 0  I I I I I 

A B C O E 

Figure 7 Effects of various types of interactions on the Young's  
modulus  E l of cellulose forms I ((3) and II (O). The modulus  is 
reduced as EI/E ° where E ° is the Young's  modulus  of form I crystal 
calculated with full interactions. (A) With all the interactions taken 
into account;  (B) without including intermolecular hydrogen bonds; 
(C) neglecting the intermolecular non-bonded interatomic interactions 
in addition to (B); (D) neglecting the intramolecular hydrogen bonds 
of type b in addition to (C); (E) neglecting the intramolecular hydrogen 
bonds of type a in addition to (D) 
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, ~ o ~  strain 

(a) (b) . 

' ' .  :' ~il ..-X 

o.z'-   .jI9 

Figure 8 Atomic displacements (internal strains) and strain energy 
distributions calculated for the mechanically tensioned cellulose chain 
(a) with and (b) without the intramolecular hydrogen bonds 

adjacent rings (c. 20%). At the same time the distribution 
to the type a intramolecular hydrogen bond is large, 
about 20%, while the distribution to the type b hydrogen 
bond is negligibly small. When these intramolecular 
hydrogen bonds are cut off (by substituting zero values 
for the corresponding force constants), the strain energy 
is found to concentrate on the torsional mode around 
the C - O  linkages (45%) and the bending of these bonds 
(17%), as shown in Figure 8b. The cellulose chain is 
constructed from a linear combination of the glucose 
rings connected to the C - O  single bonds and seems so 
flexible as to give a low Young's modulus. However, the 
actual chain gives an unexpectedly high Young's modulus 
due to the existence of effective intramolecular hydrogen 
bonds of type a. When the chain is in tension along the 
chain axis, this type of hydrogen bond suppresses the 
torsional deformation of the flexible ether linkage (as 
shown in Figure 8a) and the mechanical deformation of 
the chain is due to the bending mode of the skeletal 
linkages. Hence, the Young's modulus of the cellulose 
chain is governed by strong intramolecular hydrogen 
bonds, especially of type a. 

The same situation is also seen for the case of cellulose 
form II. As shown in Figure 2, one of the structural 
differences between forms 1 and II is the presence of type 
b intramolecular hydrogen bonds. But, as discussed 
above, this type of intramolecular hydrogen bonding has 
almost no influence upon E 1, indicating that the Young's 
modulus should not be the same for forms I and II. It is 
questionable to ascribe the difference in Et to the 
existence of type b hydrogen bonds as reported by 
Kroon-Batenburg et al. 34. The difference in Et is 
considered to originate from the difference in the strength 
of the hydrogen bonds. As discussed earlier, the f value 
of the hydrogen bond is slightly smaller in form II than 
in form 1. (This is supported by the difference in the 
position of the O - H  bands in the i.r. and Raman spectra.) 

On the basis of the above, we can predict that the 

Young's modulus of the cellulose chain should be reduced 
by c. 60% if the intramolecular hydrogen bonds are 
removed. The experimental results reported by Nishino 
et al. 35 support this prediction. They measured the X-ray 
crystallite modulus of cellulose triacetate (CTA). The 
fibre period of CTA is about 10.5 A, close to that of 
native cellulose (10.4 A), and is considered to have almost 
the same skeletal conformation as that of native cellu- 
lose 36. However, CTA has no intramolecular hydrogen 
bonds because the OH groups are substituted by ester 
groups. The observed E~ value was only about 33 GPa.  
Even after the correction for the effective cross-sectional 
area of the chain (68 /~2 for CTA and 32 /~k 2 for native 
cellulose), the modulus is only about 50% of that of form 
I. Strictly speaking, the molecular conformation of CTA 
may be different from that of the cellulose form I model 
with the intramolecular hydrogen bonds removed (Figure 
8b) and therefore the crystallite modulus measured for 
CTA cannot be compared directly with the theoretical 
value (Figure 7). However, the experimental result for 
CTA is worth noting in connection with the role of 
intramolecular hydrogen bonds in determining the 
Young's modulus of cellulose chains. 

In this way the importance of the intramolecular 
hydrogen bonds in the determination of the Young's 
modulus E~ of cellulose has been clarified. Such a 
discussion leads us to the consideration of the Young's 
modulus of atactic poly(vinyl alcohol) (PVA), for 
example. We calculated the Young's modulus of syndio- 
tactic PVA to be c. 287 GPa  v. Isotactic PVA possesses 
strong intramolecular OH • -. O hydrogen bonds along 
the chain direction 37, leading us to predict that it-PVA 
exhibits a much higher Young's modulus. In fact the 
lattice dynamical calculations gives a modulus of about 
323 GPa  for the it-PVA chain. Therefore we might say 
that the Young's modulus of at-PVA is enhanced by 
introducing more isotactic sequences into the skeletal 
chain. 

Mechanical anisotropy in the planes perpendicu&r to the 
chain axis. The Young's modulus E(O) and the linear 
compressibility/3(0) in the direction 0 from the x axis in 
the plane perpendicular to the chain axis are calculated 
using the following equations. 

1/E(O) = sll cos 4 0 + 2s12 sin 2 0 COS 2 0 

+ 2S16 COS 3 0 sin 0 + s22 sin 4 0 

+ 2S26 COS 0 s in  3 0 -F s6~ , cos  2 0 s in  2 0 

/3(0)= (sll + s12 + s13)cos 2 0 + (s21 + s22 + s23)sin 2 0 

+ (s~6 + s26 + s36 ) sin 0cos 0 

Figures 9 12 show the anisotropic curves of E(O) and 
/~(0) calculated for celluloses I and II. In these figures the 
amplitude of the vector from the centre of the cell to a 
point on the curve represents the magnitude of E or /3 
in this direction. Form I shows an anisotropic curve 
characteristic of the sheet-like structure similar to that 
for nylon 6 ~ and ?, formsS: the modulus is large in the 
sheet planes (governed by the hydrogen bonds) and small 
in the direction perpendicular to it (governed by the van 
der Waals interactions). In the case of form II, the 
anisotropy is not so extreme as in form I. This may be 
due to the effect of the intermolecular hydrogen bonds 
spreading throughout the unit cells. A similar anisotropy 
of the modulus is seen also in the cases of PVA 8 and 
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Cellulose I 1 ~~. 

/ .... 

' f llOGpa 

Figure 9 Calculated anisotropic curve of the Young's modulus in the 
plane perpendicular to the chain axis of cellulose form I 

chain axis calculated for the PPIA crystal. (The elastic 
and compliance tensors are listed in Appendix 3.) 

Figures 11, 12 and 14 show the role of the intermolec- 
ular hydrogen bonds on the anisotropy of the modulus 
and linear compressibility. Neglecting the intermolecular 
hydrogen bonds, i.e. using a calculation with only 
non-bonded interatomic interactions being considered, 
results in the relatively isotropic curve of the Young's 
modulus E(O). The modulus in the sheet plane of form I 
is largely reduced by neglecting the intermolecular 
hydrogen bonds. For form II, the modulus becomes 
smaller in both the directions of the a and b axes, though 
not in the (1 1 0) direction. This behaviour is similar to 
that for nylon 6 ~ and 7 formsS. The effect of hydrogen 
bonds on the linear compressibility is interpreted in a 
similar way. 

Cellulose ] ] ~ ~ .  

Figure 10 Calculated anisotropic curve of the Young's modulus in 
the plane perpendicular to the chain axis of cellulose form II 

/y~Cellulose I 
~t\\\ 

Figure 11 Calculated anisotropic curve of the linear compressibility 
in the plane perpendicular to the chain axis of cellulose form I. The 
solid and broken curves are for the calculation with and without the 
intermolecular hydrogen bonds being taken into account, respectively 

poly(m-phenylene isophthalamide) (PPIA) 38, where 
intermolecular hydrogen bonds of the type NH • • • OC 
are formed in the a and b directions 39. Figure 13 shows 
the anisotropy of E(O) in the planes perpendicular to the 

/ ", C e l l u l o s e  rl / 
/ \ ' \  

" ' - ~  . . " ~ - ~  2~ P, _ / .. '~, 

; ' ' " ;  \,, ,, 
x IO'=GPo "1 \ \  // 

J 

Figure 12 Calculated anisotropic curve of the linear compressibility 
in the plane perpendicular to the chain axis of cellulose form II. The 
solid and broken curves are for the calculation with and without the 
intermolecular hydrogen bonds being taken into account, respectively 

° , , j 
I0 20 

.v X 

c 
N 

Figure 13 Calculated anisotropic curve of the Young's modulus in 
the plane perpendicular to the chain axis of poly(m-phenylene 
isophthalamide) crystal 
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~ C e l l u l o s e  ]] 

r] ~/ 0 IOGPa 

Figure 14 Effect ofintermolecular hydrogen bonds on the anisotropic 
curves of the Young's modulus in the plane perpendicular to the chain 
axis of cellulose forms I and II: - - - ,  with all the intermolecular 
interactions; - - -  , without the intermolecular hydrogen bonds 

C O N C L U S I O N S  

In the  p re sen t  p a p e r  we h a v e  ca l cu l a t ed  the  three-  
d i m e n s i o n a l  e las t ic  and  c o m p l i a n c e  ma t r i ce s  for  the  
ce l lu lose  c rys ta l  fo rms  I and  II  on  the basis  o f  la t t ice  
d y n a m i c a l  t r e a t m e n t .  T h e  ca l cu l a t ed  Y o u n g ' s  m o d u l u s  
E~ a l o n g  the  cha in  axis is 167.5 G P a  for  f o r m  I and  
162.1 G P a  for  f o r m  II .  T h e  l a t t e r  has  a s l ight ly  l o w e r  
va lue  because  of  the  sma l l e r  f va lue  of  i n t r a m o l e c u l a r  
h y d r o g e n  b o n d s  o f  type  a, as s h o w n  by the h ighe r  
v i b r a t i o n a l  f r e q u e n c y  of  the  O - H  s t re tch ing  m o d e  in the  
i.r. and  R a m a n  spec t ra .  T h e  m o s t  i m p o r t a n t  fac to r  in 
d e t e r m i n i n g  E~ is the  i n t r a m o l e c u l a r  h y d r o g e n  b o n d s ,  
especia l ly  of  type  a, a n d  neg l ec t i ng  these  b o n d s  reduces  
the  m o d u l u s  to c. 4 0 % .  T h e  E~ is n o t  m u c h  affected by 
the  i n t e r m o l e c u l a r  n o n - b o n d e d  in t e r ac t i ons  o r  the  in te r -  
m o l e c u l a r  h y d r o g e n  b o n d s .  An  a n i s o t r o p y  of  the  Y o u n g ' s  
m o d u l u s  a n d  l inear  compres s ib i l i t y  in the  p lanes  pe rpen -  
d icu la r  to  the  cha in  axis were  a lso  ca lcu la ted .  T h e  
degree  of  a n i s o t r o p y  is g o v e r n e d  by the  ba l ance  b e t w e e n  
the  i n t e r m o l e c u l a r  h y d r o g e n  b o n d s  a n d  n o n - b o n d e d  
in t e rac t ions .  

Ce l lu lose  fibres are  bas ica l ly  a n d  p rac t i ca l ly  i m p o r t a n t  
in a wide  r ange  of  fields because  of  the i r  exce l len t  
m e c h a n i c a l  p rope r t i e s .  In  this p a p e r  we h a v e  clar i f ied an  
i m p o r t a n t  role  of  the  in t ra -  a n d  i n t e r m o l e c u l a r  h y d r o g e n  
b o n d s  in d e t e r m i n i n g  the  e las t ic  b e h a v i o u r  of  ce l lu lose .  
It  is h o p e d  tha t  the resul ts  r e p o r t e d  here  m a y  act  as a 
gu ide  for  d e v e l o p i n g  ce l lu lose  fibres wi th  i m p r o v e d  
m e c h a n i c a l  p rope r t i e s .  
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A P P E N D I X  1 

TaSle A1 Numerical values of the intramolecular force constants 

No. Coordinates involved Common atoms Values ~ 

1 C-H (CH2) 4.626 
2 C-H (CH) 4.688 
3 C O 5.090 
4 C C 4.261 
5 b O H (type a) (11 6.200 

(II) 6.700 
(type b) 6.400 
(intermol) 5.900 
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Table A1 continued 

No. Coordinates involved Common atoms Values a No. Coordinates involved Common atoms Values a 

6 b O . . -  HO (type a) (I) 0.150 32 H-C-C,  H - C - C  C-C (gauche) 0.004 
(II) 0.100 33 H-C-C,  H - C - C  C-C (trans) 0.121 

(type b) 0.100 34 H-C-O,  C - C - O  C-O -0.031 
(intermol) 0.200 35 H-C-C,  C - C - C  C-C -0.031 

7 C-H, C-H C -0.046 36 H-C-O,  C - O - C  C-O (gauche) 0.004 
8 C-O, C-O O 0.288 37 H-C-C,  C - C - O  C-C (gauche) -0.113 
9 C-C, C-O C 0.101 38 H-C-C,  C - C - C  C-C (gauche) -0.052 

10 C-C, C-C C 0.101 39 H-C-C,  C C-C C-C (trans) 0.049 
11 H - C - H  (CCH20) 0.471 40 C-C-O,  C - C - O  C-O -0.041 
12 H - C - C  (CCH20) 0.752 41 C-C-O,  C - C - C  C-C -0.041 
13 H - C - O  (CCH20) 0.901 42 C-O-C,  O - C - C  C O (gauche) 0.011 
14 H - C - O  (ring CH) 0.961 43 C-O-C,  O - C - C  C-O (trans) -0.011 
15 H - C - C  (ring CH) 0.718 44 O-C-C,  C - C - O  C-C (gauche) 0.011 
16 H - O - C  0.760 45 O-C-C,  C - C - O  C-C (trans) -0.011 
17 C - O - C  1.313 46 C-C-C,  C - C - O  C-C (gauche) 0.011 
18 C - C - O  1.182 47 C-C-C,  C - C - O  C-C (trans) -0.011 
19 C - C - C  1.071 48 C-C-C,  C C-C C-C (gauche) 0.011 
20 0 -C-O 1.200 49 C-C-C,  C-C-C  C-C (trans) - 0.011 
21 C-O, H - C - O  C-O 0.387 50 C-O-C,  O - C - O  C-O (gauche) 0.011 
22 C-C, H - C - C  C-C 0.403 51 C-O-C,  O - C - O  C-O (trans) - 0.011 
23 C-C(O), H - C - C  C 0.079 52 torsion (C-O) 0.026 
24 C-O, C - O - C  C-O 0.483 53 torsion (C-C) 0.024 
25 C-O, C - C - O  C-O 0.618 54 b O . . .  H-O (bending) 0.06 
26 C-C, C - C - O  C-C 0.403 55 b H . . .  O-C (bending) 0.06 
27 C-C, C - C - C  C-C 0.417 
28 H-C-O,  H - C - O  C-O -0.005 
29 H-C-C,  H - C - C  C-C 0.105 "Units: mdyn/A for stretching, mdyn ,~/rad 2 for bending and torsion, 
30 H-C-O,  H - C - C  H-C 0.115 and mdyn/rad for stretching-bending 
31 H-C-C,  H - C - C  H-C 0.012 bForce constants for hydrogen bonds. Refer to the text 

A P P E N D I X  2 

Table A2 Calculated wavenumbers and approximate description of the vibrational modes for cellulose crystal form I 

Symmetry species 

A a B 

0 = 0  b 0= n 0 = 0  0 = n  Modes ~ 

3412 3412 3412 3412 

3372 3372 3372 3372 

3309 3309 3309 3309 

3037 3037 3037 3037 

2972 2972 2972 2972 

2953 2953 2954 2954 

2951 2950 2951 2950 

2940 2939 2939 2940 

2877 2877 2877 2877 

1501 1501 1508 1510 

1475 1474 1474 1474 

1467 1468 1467 1466 

1445 1446 1446 1445 

1411 1410 1410 1411 

1398 1399 1406 1403 

1391 1391 1390 1390 

1367 1366 1370 1370 

1357 1357 1365 1365 

1354 1355 1350 1348 

1333 1337 1337 1336 

1292 1294 1303 1304 

1284 1283 1287 1288 

1263 1265 1273 1269 

v(OH) (type b) 

v(OH) (type a) 

v(OH) (intermol) 

v(CH) 

v~(CH2) 

v(CH) 

v(CH) 

v(CH) 

v~(CH2) 

5(CH) 

6(CH2) + 5(CH) 

6(CH) 

•(CH2) 

5(CH) 

6(OH) + 6(CH) 

5(OH) + 6(CH) 

5(CH) 

~(CH) 

6(CH) 

6(CH) 

5(CH) 

6(CH) 

~(CH) + w(CH2) 
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Table A2 continued 

A a 

0 = 0 b 0 = n 

1245 1245 

1230 1234 

1187 1185 

1161 1159 

1154 1155 

1138 1139 

1127 1126 

1116 1119 

1090 1089 

1069 1069 

1045 1045 

996 998 

980 98O 

965 965 

905 901 

727 728 

662 664 

610 607 

579 577 

541 542 

455 456 

452 450 

430 428 

413 414 

398 400 

348 349 

315 321 

306 306 

276 277 

263 264 

194 193 

176 172 

150 150 

141 148 

117 120 

105 110 

95 

80 

77 

54 

41 

Three-dimensional elastic constants of cellulose." K. Tashiro and M. Kobayashi 

Symmetry species 

0 = 0  0 = ~  

1247 1248 

1237 1235 

1191 1192 

1167 1163 

1159 1160 

1143 1143 

1124 1124 

1111 1110 

1082 1082 

1075 1075 

1050 1051 

1028 1028 

983 984 

970 973 

916 917 

662 660 

627 627 

579 580 

541 541 

518 518 

466 468 

447 445 

429 431 

419 413 

389 387 

382 377 

360 356 

321 321 

288 288 

281 280 

260 262 

227 226 

211 202 

138 139 

130 124 

111 107 

105 

84 

81 

"Phase relation between the corner and centre chains in the unit cell 

34 

Modes c 

t(CH2) 

~(CH) + t(CH2) 

r(CH2) + ,~(CH) 

6(CH) + 6(skel) 

v(CC) + v(CO) + ,~(CH) 

v(CC) + v(CO) + 6(CH) 

6(CH) + r(CH2) 

v(CC) + v(CO) + 3(skel) 

6(CH) 

v(CC) + v(CO) + ,~(CH) 

v(CC) + v(CO) + 6(CH ) 

6(CH) + r(CH2) 

3(skel) + 3(CH) 

v(CC) + 6(skel) + 6(CH) 

r(CH2) 

3(skel) + 6(CH) 

6(skel) + 3(CH) 

6(skel) + 3(CH) 

8(skel) + 6(CH) 

6(skel) 

6(skel) + 6(CH) 

6(skel) 

6(skel) + 3(CMO) 

3(MO . . .  O) + r(COH) 

6(skel) + 3(MO • • • H) + 6(COH) + v(O. -. O:inter) 

6(skel) 

6(skel) + c~(MO) 

8(skel) + 6(CH) 

6(skel) + 6(CH) 

v(OH •. .  O:a,b) + 6(skel) 

r (CMOH) + v(O - - - O:inter) 

3(skel) + v(OH . • • O:b) 

v(OH ' ' - O:a,b) 

v(OH -. - O:b) + ~(skel) 

3(skel) 

6(skel) + z(CMOH) + v(OH • • • O:b) 

6(skel) 

v(OH • - • O : b ) +  6(CMO) 

v(OH • . . O:b) + 6(skel) 

v(OH • - - O:a,b) 

6(skel) + r(skel) + v(H - • • H:inter) 

r(skel) + v(OH - - - O:b) 

r(skel) + 6(skel) + 6(CO •. • H) 

r(ether link} 

L(Tb) 

L ( R )  + 

L ( R ) -  + r(skcl) 

L ( R ) -  

L(T,,) 
L(T . )  

bVibrational modes: v, stretching; 6, bending; w, wagging; t, twisting; r, rocking; 6(skel), bending of skeletal ring; 6(CMO), bending o f - C - C H 2 - O H  
bond; 6(MO.  • • H), bending o f - C H  z O . . .  H hydrogen bond angle; r(COH), torsion around C - O H  bond; z(CMOH), torsion around CCH2-OH;  
r(skel), torsion of skeletal ring; r(ether link), torsion around the ether linkage between two rings; v(OH - - • O), stretching mode of intramolecular 
hydrogen bond; L, lattice vibrational modes (refer to Figure 6) 
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APPENDIX 3 

Three-dimensional elastic and compliance constants of 
poly(m-phenylene isophthalamide) crystal 

The lattice dynamically calculated elastic (c) and 
compliance (s) tensors of PPIA crystal are as follows. 
The details of the calculation will be reported elsewhere 38. 

C ~  

-22.09 11.10 17.84 -2.33 -4 .50  

40.87 17.63 -1 .57 -3.03 

137.37 -3 .17 -9.02 

symmetric ! 3.93 7.07 

9.62 

-5.99 - 1 . 3 6  

3.12 

symmetric 

1 .26-  

4 . 6 2  

3.05 
GPa 

- 1 .92  

-2 .35 

6.05 

-0 .47 -0 .36  2.41 0.85- 

-0 .20  -0 .05 -0.33 -2 .14  

0.86 -0 .27 0.72 0.01 

11.61 -8.85 0.50 

19.62 4.20 

19.78 

x 10 -~ GPa -1 

The Young's modulus along the chain axis is calculated 
as 116.8 GPa. 
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